Simplex Consensus A Fast and Simple Consensus Protocol

Benjamin Chan

Cornell Tech

Joint work with Rafael Pass

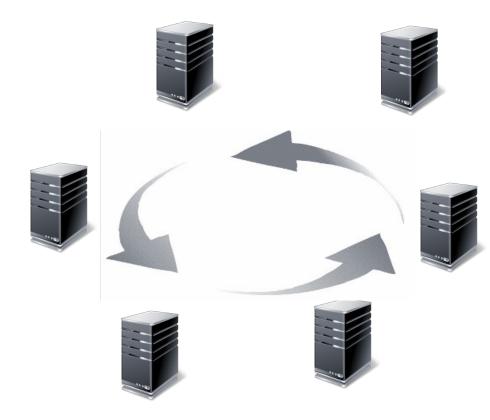
Consensus Protocols in today's world

"A crucial contribution to the development of a new technology that will impact all of our lives." —LAURA SHIN, host of Unchained podcast and author of The Cryptopians

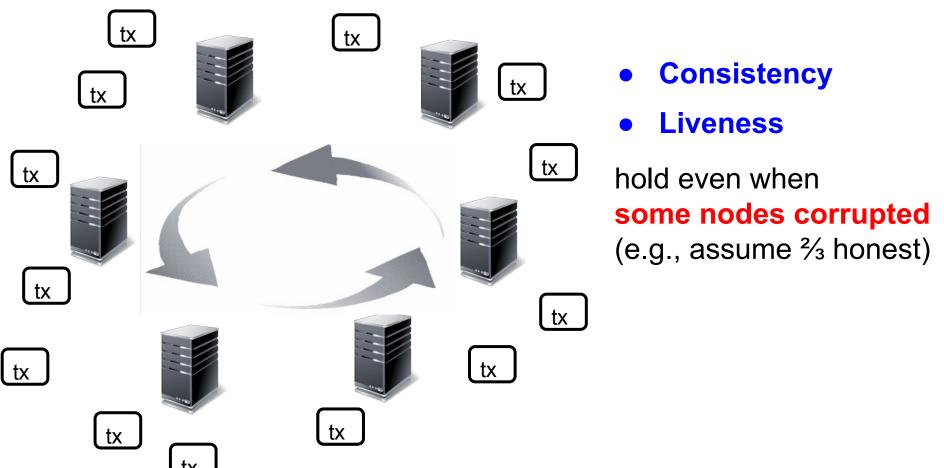
VITALIK BUTERIN

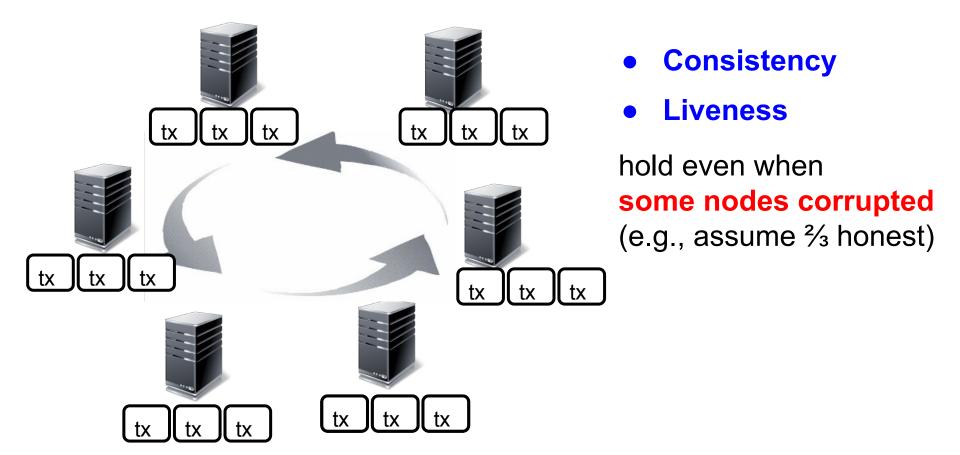
Algorand's Pure Proof of Stake Blockchain

Delivering security, scalability, decentralization and sustainability since 2019.



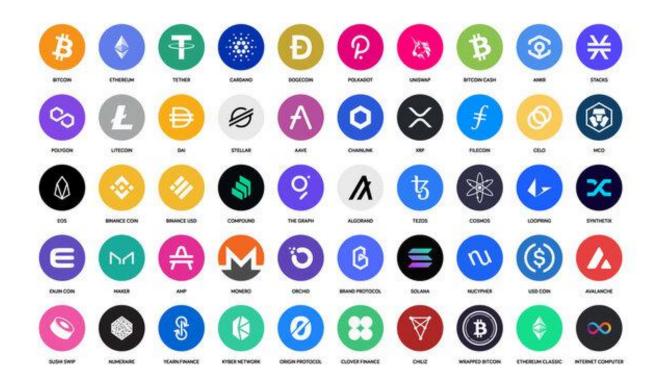
The Making of Ethereum and the Philosophy of Blockchains


Consensus (a.k.a. state machine replication, public ledger)


- Consistency
- Liveness

hold even when **some nodes corrupted** (e.g., assume ²/₃ honest)

Consensus (a.k.a. state machine replication, public ledger)



Consensus (a.k.a. state machine replication, public ledger)

New era, new requirements

- thousands of players
- malicious faults
- unreliable Internet
- fast transaction confirmation time
- fairness

Bitcoin and Proof-of-Work

- Amazing protocol, but sub-optimal "performance":
- E.g. Bitcoin has
 - Transaction confirmation time: ~60 minutes (6 blocks)
 - Block time: 10 min (7 transactions per second)
- Wastes electricity and computational resources.

And Riot Platforms' mine in **Rockdale**, **Texas**, uses about the same amount of electricity as the nearest 300,000 homes, making it the most power-intensive Bitcoin mining operation in America.

(source: New York Times)

Proof-of-Stake blockchains

- Can be much more performant than **Proof-of-Work** blockchains
- E.g. Ethereum
 - Transaction confirmation time: **15 mins**
 - Block time: **12 sec**
 - Throughput: **350 tps** (assuming block size of 4200 txs)
- E.g. Algorand
 - Transaction confirmation time: 4 sec
 - Block time: 4 sec
 - Throughput: 1050 tps (assuming block size of 4200 txs)
- No computational waste

• Two different philosophies

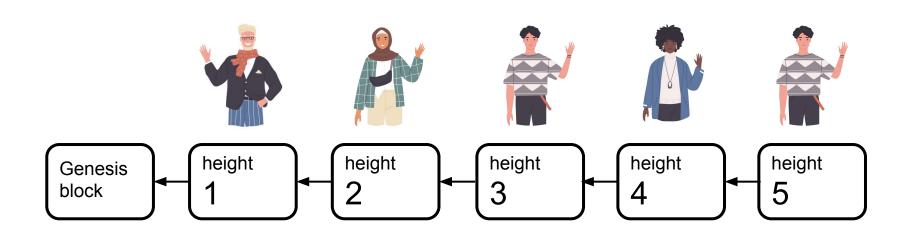
- Dynamic/sleepy participation [PS'18]: "people come and go"
- **Partial synchrony**: security even under network partitions, faster.

(Partially-Synchronous) Proof-of-Stake blockchains

Uses classical permissioned consensus protocols under-the-hood

- In classical consensus, the set of *n* players is known ahead of time.
- Overall latency inherited from underlying consensus protocol.
- Require additional features for "fairness": random-leader consensus

This talk: classical consensus protocols for the proof-of-stake setting


This talk: Designing a simpler and faster random-leader consensus protocol

1. **Fairness.** Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

Random-leader consensus

1. **Fairness.** Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

1. Fairness. Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

- 2. Latency. Specifically, must have fast transaction confirmation time.
 - a. The optimistic case: when every player is honest.
 - b. The *pessimistic* case: when some players are faulty.

Underappreciated!

1. Fairness. Each player should have a fair chance at proposing each block.

Something like PBFT — where the same leader can propose every block for eternity — is not suitable for a blockchain application.

- 2. Latency. Specifically, must have fast transaction confirmation time.
 - a. The optimistic case: when every player is honest.
 - b. The *pessimistic* case: when some players are faulty.

3. **Easy-to-understand.** Should be easy to understand *why* the protocol is secure.

Transaction confirmation time

Suppose a transaction **tx** is provided to the protocol by time **t**. How long does it take for **tx** to be finalized?

- Optimistic Confirmation Time (no faults)
 - **Proposal Confirmation Time**: when a new block is proposed, how long does it take for it to get confirmed?
 - **Optimistic Block Time**: how long does a transaction need to wait before being included in a block proposal?

Transaction confirmation time

Suppose a transaction **tx** is provided to the protocol by time **t**. How long does it take for **tx** to be finalized?

- Pessimistic Confirmation Time (allowing faults)
 - Worst-case confirmation time. How long does it take in the worst case to be finalized?
 - Expected Liveness: On average, how long does it take?
 (We assume that the transaction arrives at the beginning of the ith block proposal opportunity.)

Partial Synchrony

The network may be unreliable, and even occasionally partitioned in half.

Formally, there is a fixed unknown time **GST**, an unknown time bound δ , and a known time bound $\Delta > \delta$ s.t.

- **Before GST**, messages take arbitrarily long to be delivered
- After GST, every message is delivered within **δ** seconds.

Partial synchrony models a flaky Internet, or implementation bugs that cause players to drop messages.

Theoretical latency of partially-synchronous protocols that support random leaders

First "random-leader" partially synchronous

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
$\frac{\text{ICC}}{[\text{CDH}^+22]}$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

These protocols pipeline their block proposals to achieve **2ð** block time

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff			
[JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

However, they require multiple honest leaders in-a-row to confirm blocks, which hurts pessimistic liveness.

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$		
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$		
ICC [CDH ⁺ 22]	3δ	2δ	$5.5\delta + 1.5\Delta$		
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$		
Pipeline Fast-Hotstuff [JNFG20] Jolteon	5δ	2δ	$10.87\delta + 9.5\Delta$		
$[GKKS^+22]$					
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$		
Streamlet [CS20a]	10Δ	2Δ	39.56Δ		

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

Protocols that don't pipeline blocks usually sacrifice block time, but get good expected liveness

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	38	3δ	$4\delta + 2\Delta$
ICC [CDH ⁺ 22]	30	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

Theoretical latency of partially-synchronous protocols that support random leaders

Easiest protocol description [CS20]

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Algorand* [CGMV18]	38	3δ	$4\delta + 2\Delta$
ICC [CDH ⁺ 22]	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

This talk

A new consensus protocol, called Simplex Consensus

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest security proofs!
- Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

- Proposal confirmation time of 3δ
- Optimistic block time of **2**
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

This talk

A new consensus protocol, called Simplex Consensus

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest liveness proof
- Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

- Proposal confirmation time of 3δ
- Optimistic block time of **2**
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

This talk

A new consensus protocol, called Simplex Consensus

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest liveness proof
 - Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

- Proposal confirmation time of 3δ
- Optimistic block time of 28
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

Essentially all prior work in this model has non-trivial liveness proof

Comparisons

Theoretical latency of protocols that support random leaders

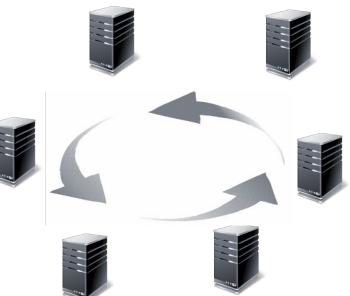
Simplex: The best of both worlds

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
$\frac{\text{ICC}}{[\text{CDH}^+22]}$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

*Base protocol without sortition.

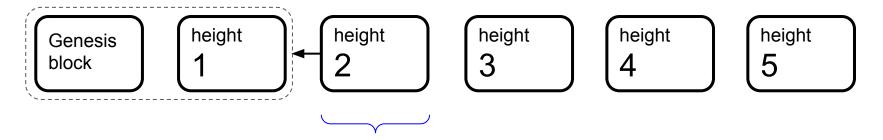
Comparisons

Theoretical latency of protocols that support random leaders


Simplex:				
The best of both worlds				
	ł			

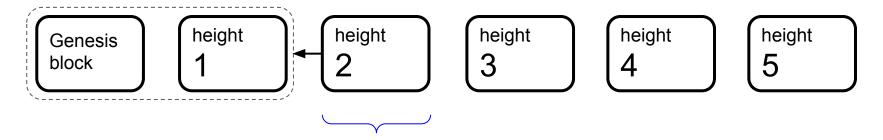
In our eyes, also easier to understand.

	Proposal Conf. Time	Optimistic Block Time	Pessimistic Liveness $(f = \lceil n/3 \rceil - 1)$
Simplex	3δ	2δ	$3.5\delta+1.5\Delta$
Algorand* [CGMV18]	3δ	3δ	$4\delta + 2\Delta$
ICC $[CDH^+22]$	3δ	2δ	$5.5\delta + 1.5\Delta$
PaLa [CPS18]	4δ	2δ	$6.25\delta + 9.25\Delta$
Pipeline Fast-Hotstuff [JNFG20] Jolteon [GKKS ⁺ 22]	5δ	2δ	$10.87\delta + 9.5\Delta$
Chained Hotstuff (v6) [YMR ⁺ 19]	7δ	2δ	$19.31\delta + 12.18\Delta$
Streamlet [CS20a]	10Δ	2Δ	39.56Δ

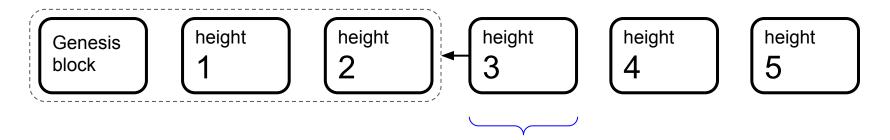

*Base protocol without sortition.

Protocol Description

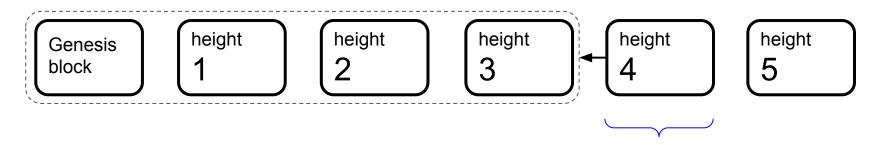
n players, **f < n/3** malicious faults. we know their public keys ahead of time (bare PKI)


Key data structure: **blockchain**

each block of height h is a tuple of the form

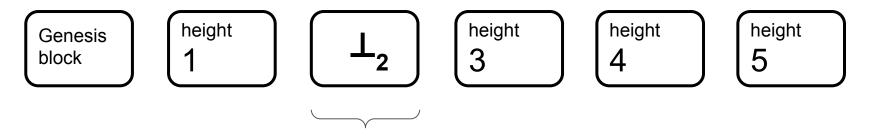

 $\mathbf{b}_{\mathbf{h}} = (\mathbf{h}, hash of a parent chain, txs)$

Key data structure: **blockchain**


each block of height h is a tuple of the form

Key data structure: **blockchain**

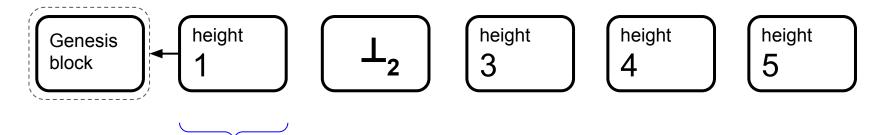
each block of height **h** is a tuple of the form


Key data structure: **blockchain**

each block of height h is a tuple of the form

Dummy blocks

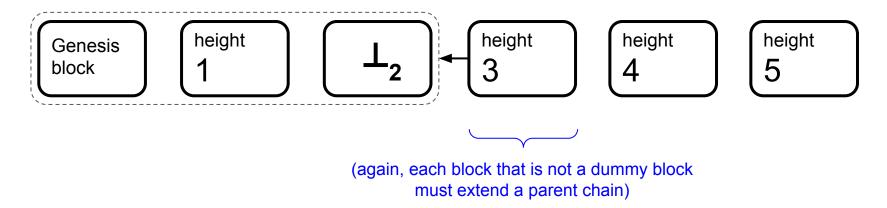
We also allow the blockchain to contain "dummy blocks"



a dummy block of height h is the tuple

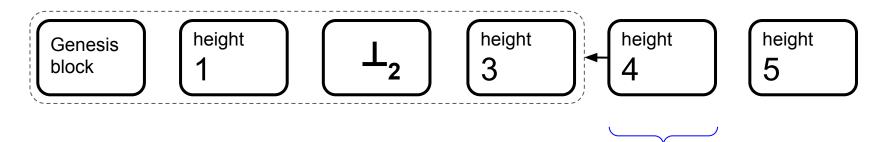
$$\perp_{h} = (h, \perp, \perp)$$

Dummy blocks


We also allow the blockchain to contain "dummy blocks"

(again, each block that is not a dummy block must extend a parent chain)

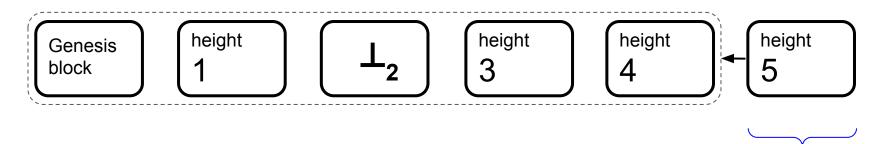
Dummy blocks


We also allow the blockchain to contain "dummy blocks"

$$b_{h} = (h, Hash(b_{1} \dots b_{h-1}), txs)$$

Dummy blocks

We also allow the blockchain to contain "dummy blocks"

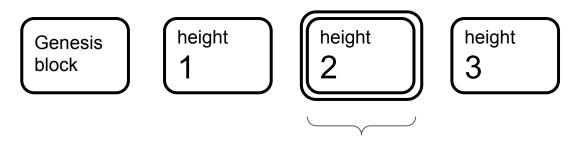


(again, each block that is not a dummy block must extend a parent chain)

 $\mathbf{b}_{h} = (\mathbf{h}, Hash(\mathbf{b}_{1} \dots \mathbf{b}_{h-1}), \mathbf{txs})$

Dummy blocks

We also allow the blockchain to contain "dummy blocks"

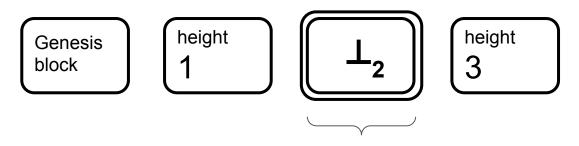


(again, each block that is not a dummy blo must extend a parent chain)

 $b_{h} = (h, Hash(b_{1} \dots b_{h-1}), txs)$

Notarized blocks

Key data structure: notarized blocks

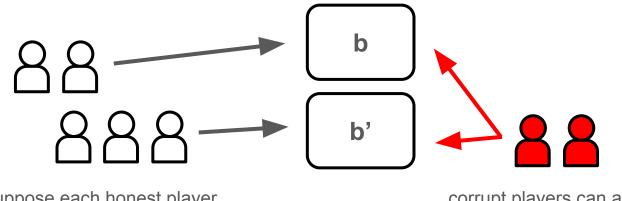

a block is notarized in my view if I've seen

> 2n/3 votes for it

a vote for **b** = a signed message "vote for **b**"

Notarized blocks

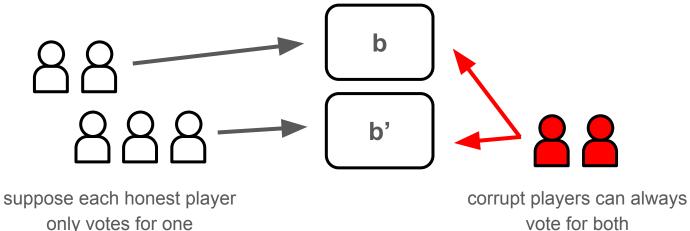
Dummy blocks can also be notarized.


a block is notarized in my view if I've seen

> 2n/3 votes for it

a vote for **b** = a signed message "vote for **b**"

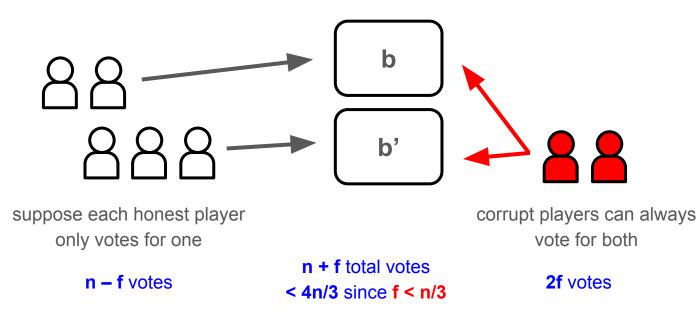
"Quorum intersection"


If honest players only vote for one of **b** or **b**', then it cannot be that both **2n/3** players voted for **b**, and **2n/3** players voted for **b**'.

suppose each honest player only votes for one corrupt players can always vote for both

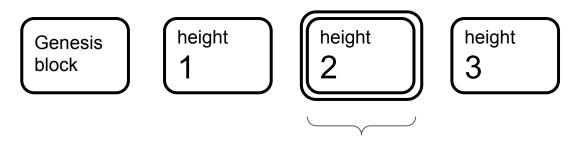
"Quorum intersection"

If honest players only vote for one of **b** or **b**', then it cannot be that both 2n/3 players voted for b, and 2n/3 players voted for b'.


vote for both

n – **f** votes

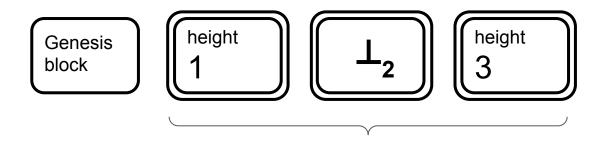
2f votes


"Quorum intersection"

If honest players only vote for one of **b** or **b**', then it cannot be that both **2n/3** players voted for **b**, and **2n/3** players voted for **b**'.

Notarized blocks

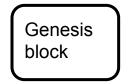
Key data structure: notarized blocks


a block is notarized in my view if I've seen

> 2n/3 votes for it

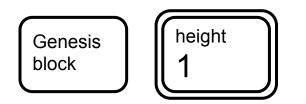
a vote for **b** = a signed message "vote for **b**"

Notarized blockchains

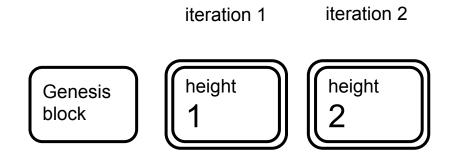

Key data structure: notarized blockchain

every block of the chain is notarized (except genesis)

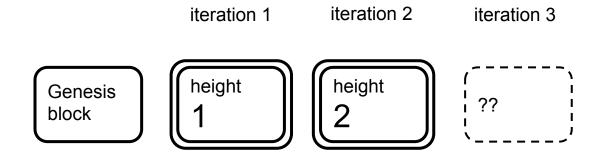
Proceed in iterations **h** = 1, 2, 3, ...


In each iteration **h**, collectively try to build a notarized block of height **h**.

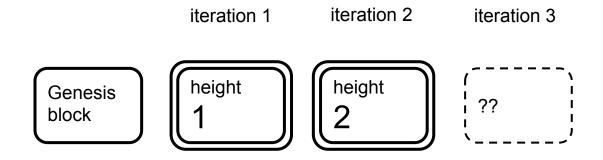
Proceed in iterations **h** = 1, 2, 3, ...


In each iteration **h**, collectively try to build a notarized block of height **h**.

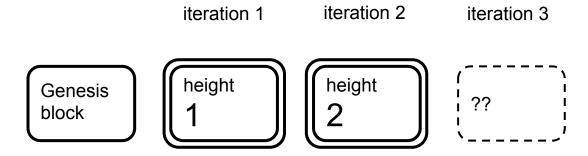
iteration 1


Proceed in iterations **h** = 1, 2, 3, ...

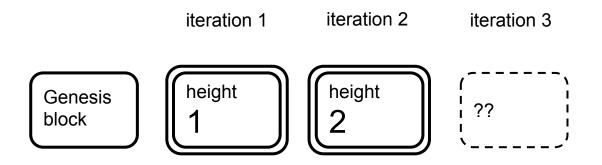
In each iteration h, collectively try to build a notarized block of height h.


Proceed in iterations **h** = 1, 2, 3, ...

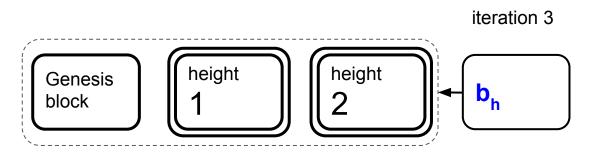
In each iteration **h**, collectively try to build a notarized block of height **h**.


Proceed in iterations **h** = 1, 2, 3, ...

Only move to the next iteration when I've seen a notarized blockchain of length h.

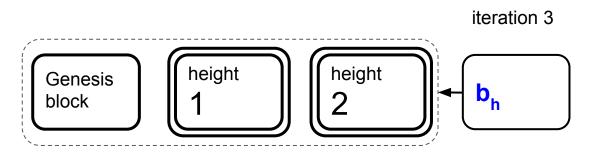

Proceed in iterations **h** = 1, 2, 3, ...

Only move to the next iteration when I've seen a notarized blockchain of length **h**. (Also, send this notarized blockchain to everyone else.)

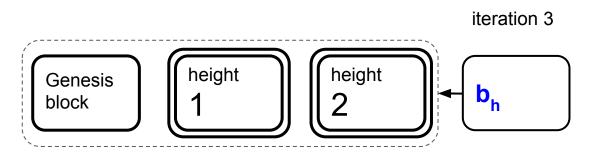

Each iteration has a leader player chosen randomly ahead of time.

Specifically, the leader of iteration $\mathbf{h} = H^*(\mathbf{h}) \mod \mathbf{n}$, where H^* is a random oracle.

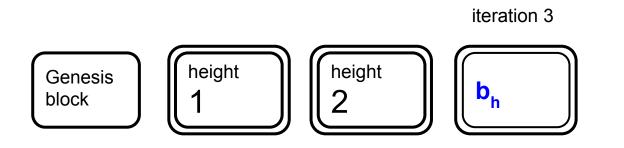
Each player i, on entering iteration h


 If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".

Each player i, on entering iteration h

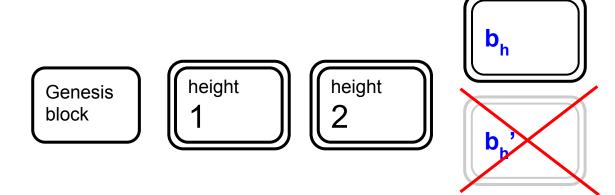


 If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".


Each player **i**, on entering iteration **h**

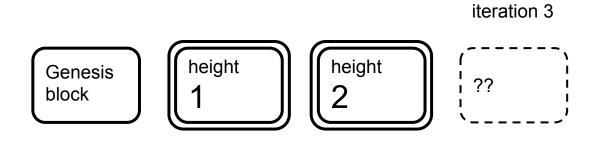
- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h".

Each player i, on entering iteration h

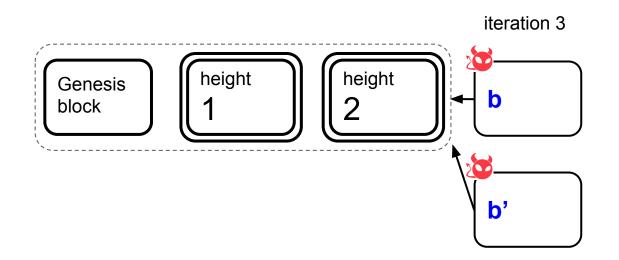

- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h".

If the network is good and the leader is honest, the block proposal will get notarized!

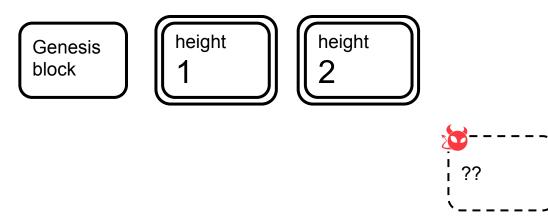
Each player **i**, on entering iteration **h**


- If i is the leader, i chooses notarized blockchain of length h-1, extends it with a new block b_h and sends everyone a signed message "propose b_h".
- On seeing the *first* valid proposal from the leader, player i sends everyone a signed message "vote b_h". iteration 3

At most one block proposal from the leader can be notarized in honest view

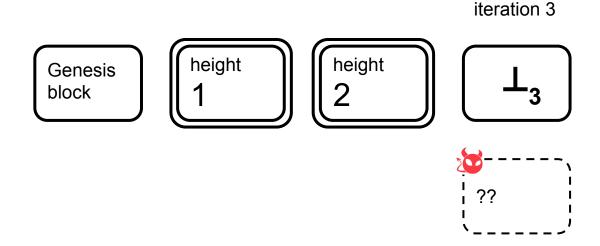

Handling faults

Scenario 1: if the network drops all messages, or leader crashed, maybe players never see a block proposal for that iteration...

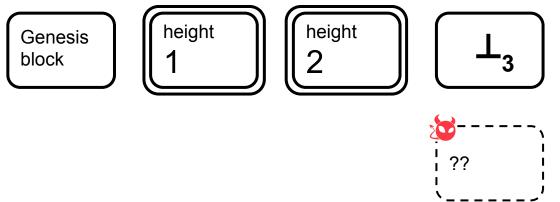


Handling faults

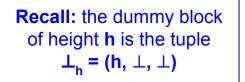
Scenario 2: a faulty leader sends different proposals to different players, and honest players split their vote, so no block proposal gets notarized...



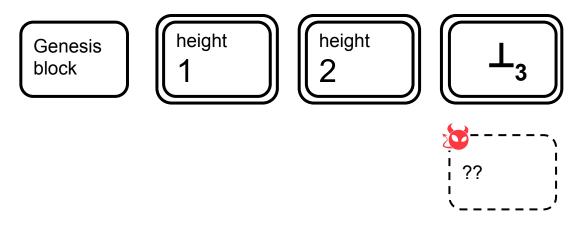
If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".

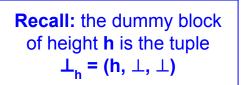


iteration 3

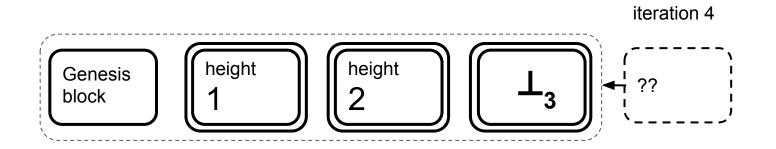

If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".

If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".




iteration 3

If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".


If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".

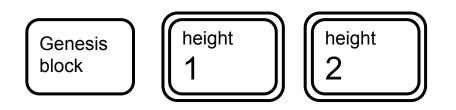
iteration 3

On seeing notarized dummy block, can now move on to the next iteration!

If 3Δ time has passed since player i has entered iteration h, and if i still has not entered iteration h+1, player i sends to everyone a signed message "vote \perp_{h} ".

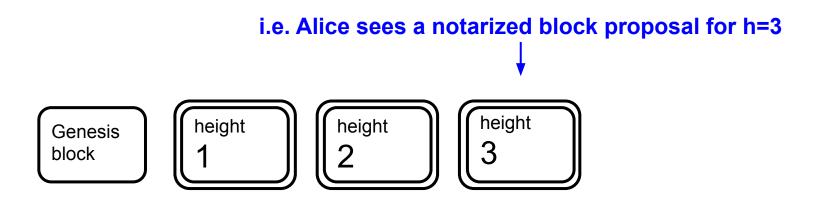
On seeing notarized dummy block, can now move on to the next iteration!

If there are faults during iteration **h**, there may be **both**

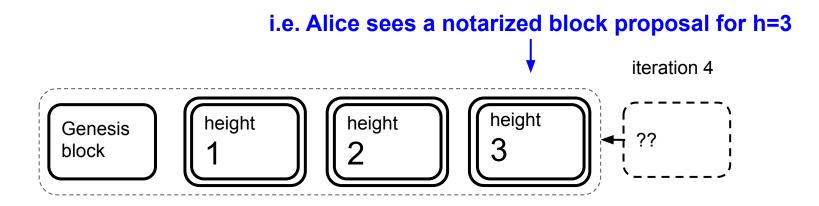

- a notarized block proposal (for h), and
- a notarized dummy block L

If there are faults during iteration **h**, there may be **both**

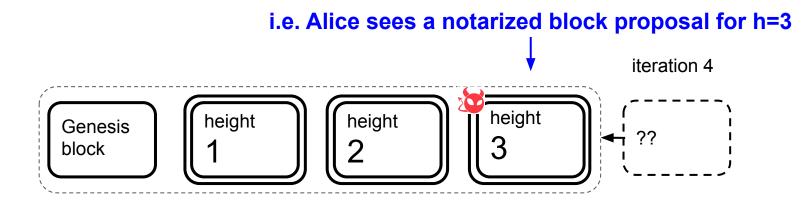
- a notarized block proposal (for h), and
- a notarized dummy block L


in the view of honest players.

i.e. Alice sees a notarized block proposal for h=3


If there are faults during iteration **h**, there may be **both**

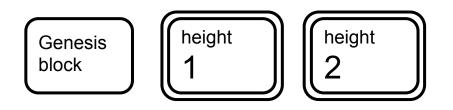
- a notarized block proposal (for h), and
- a notarized dummy block L


If there are faults during iteration **h**, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

If there are faults during iteration **h**, there may be **both**

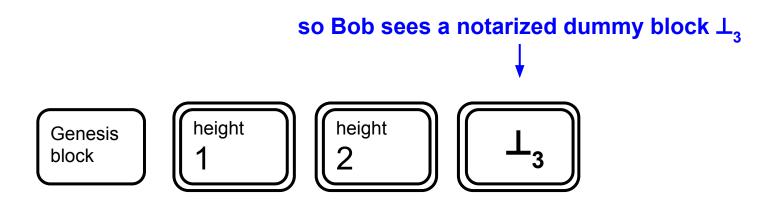
- a notarized block proposal (for h), and
- a notarized dummy block L



If there are faults during iteration **h**, there may be **both**

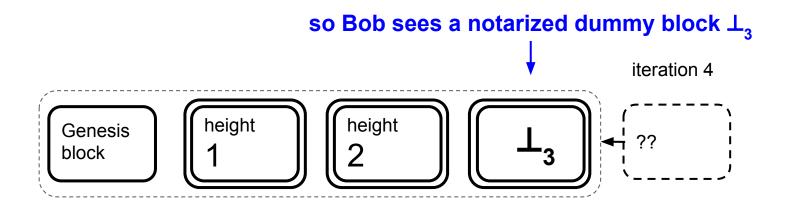
- a notarized block proposal (for h), and
- a notarized dummy block L

in the view of honest players.


but everyone else times out (and votes for \bot_3)

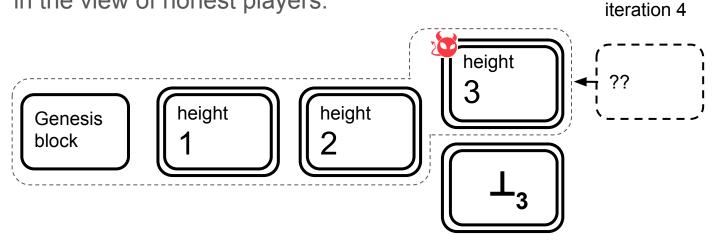
If there are faults during iteration **h**, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L


in the view of honest players.

If there are faults during iteration **h**, there may be **both**

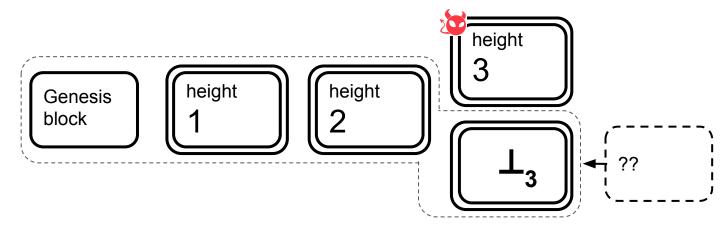
- a notarized block proposal (for h), and
- a notarized dummy block L


in the view of honest players.

If there are faults during iteration **h**, there may be **both**

- a notarized block proposal (for **h**), and
- a notarized dummy block L

in the view of honest players.

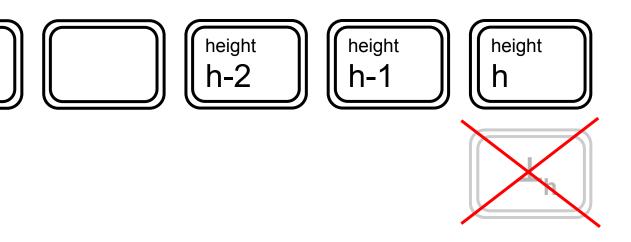


If there are faults during iteration **h**, there may be **both**

- a notarized block proposal (for h), and
- a notarized dummy block L

in the view of honest players.

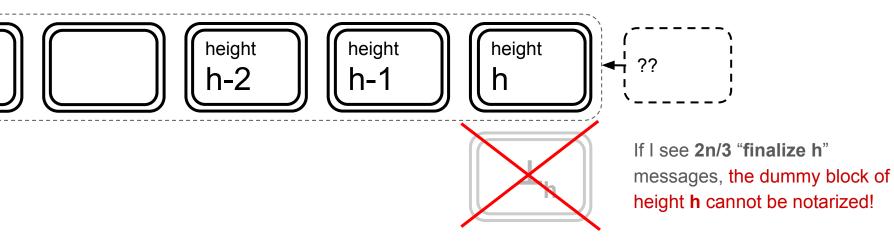
iteration 4


When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

On seeing **2n/3** "finalize h" messages, a player i finalizes any notarized blockchain of length h that it sees.

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

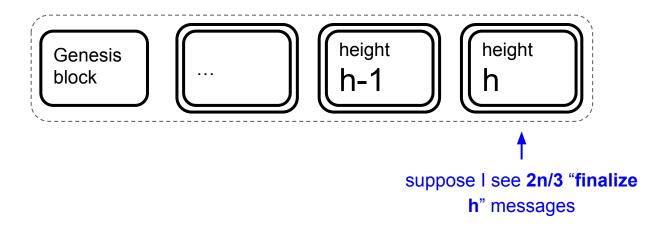

On seeing **2n/3** "finalize h" messages, a player **i** finalizes any notarized blockchain of length **h** that it sees.

If I see **2n/3** "**finalize h**" messages, the dummy block of height **h** cannot be notarized!

When player **i** enters iteration **h+1**, <u>if **i** did not time out and vote for the dummy</u> <u>block for **h**</u>, player **i** sends everyone a signed "**finalize h**" message.

On seeing **2n/3** "finalize h" messages, a player **i** finalizes any notarized blockchain of length **h** that it sees.

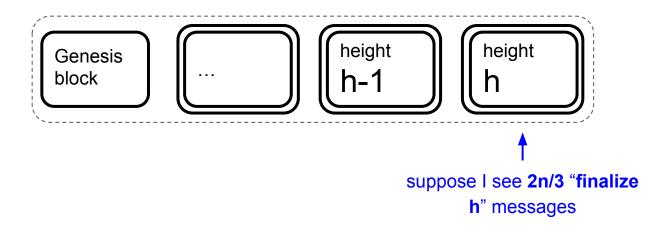
Protocol Summary


In each iteration **h** = 1, 2, 3, ... each player does the following:

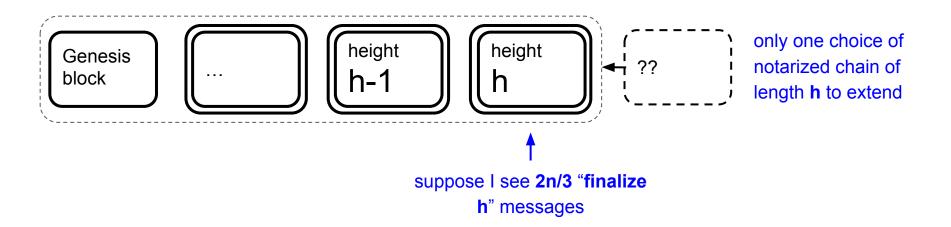
- The leader proposes a new block of height h extending a notarized blockchain of length h-1.
- 2. On seeing the first valid block proposal **b** from the leader, send everyone "**vote b**".
- 3. (Timeout) After **3** Δ time, if we are still in iteration **h**, send everyone "vote \perp_{h} ".
- On seeing a notarized blockchain of length h, enter iteration h+1.
 If we did not previously timeout, send everyone "finalize h".

At any point, in any iteration

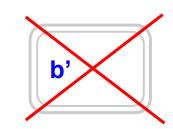
5. On seeing **2n/3 finalize** messages for any **h**, we can finalize any notarized blockchain of length **h**.


Thm: Consider two finalized chains LOG, LOG' s.t $|LOG| \le |LOG'|$. Then, LOG $\le LOG'$

Proof: Consider the shorter one: LOG, let its length be h


Since LOG is finalized, some honest player sees **2n/3** "**finalize h**" messages.

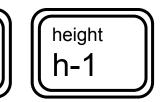
Claim: there can be only one notarized blockchain of length **h**, across all honest views

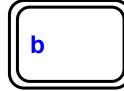


Since LOG is finalized, some honest player sees **2n/3** "finalize h" messages.

Claim: there can be only one notarized blockchain of length h, across all honest views

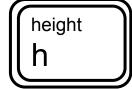
Claim: At most one block proposal from the leader can be notarized in honest view




iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

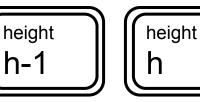

Claim: At most one block proposal from the leader can be notarized in honest view

iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

Claim: At most one block proposal from the leader can be notarized in honest view


iteration h

Proof: Each honest player votes for at most one proposal. Quorum intersection.

Genesis block

sis (..

Claim: If I see 2n/3 "finalize h" messages, the dummy block of height h cannot be notarized.

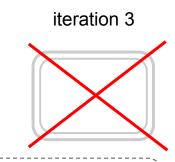
Proof: Each honest player either votes **finalize** or for \perp_h . Apply quorum intersection.

Claim: At most one block proposal from the leader can be notarized in honest view

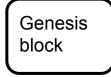
Genesis block

Claim: If I see 2n/3 "finalize h" messages, the dummy block of height h cannot be notarized.

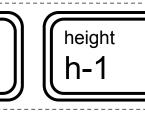
height


??

iteration 3


Thus, if someone sees **2n/3** "**finalize h**" messages: only one choice of notarized chain of length **h** to extend

 $LOG \leq LOG'$


Claim: At most one block proposal from the leader can be notarized in honest view

height

Safe to finalize the transactions in this notarized chain!

Claim: If I see 2n/3 "finalize h" messages, the dummy block of height h cannot be notarized.

Claim: if the network is good (after GST), an honest leader can always get its block proposal notarized, and then finalized.

Claim: if the network is good (after GST), an honest leader can always get its block proposal notarized, and then finalized.

Fact: if some honest player enters iteration *h* by time *t*, if t > GST, then every honest player enters iteration *h* by time $t + \delta$.

When an honest player enters an iteration *h*, it sends its notarized blockchain of length *h-1* to everyone else.

Claim: if the network is good (after GST), an honest leader can always get its block proposal notarized, and then finalized.

time t

\bullet		
Leader enters		
iteration h and		
proposes a new block		
b _h extending a notarized chain		
notarized chain		
notanzeu chain		
h h		
b ₁ b _{h-1} .		

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t

La a da ula unterna		
Leader enters		
iteration h and		
proposes a new block		
b_h extending a notarized chain		
h		
notarized chain		
b ₁ b _{h-1} .		
1 11-1		

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t t	ime $t + \delta$
•	•
Leader enters iteration <i>h</i> and proposes a new block b _h extending a notarized chain	Every honest player enters iteration <i>h</i> and sees the proposal.
b ₁ b _{h-1} .	Either everyone sends " vote b_h ", or someone already entered iteration h+1 .

Subclaim 1: every honest node will see a notarization for some block of height *h* by time $t + 2\delta$.

time t	time $t + \delta$ t	ime <i>t + 2δ</i>	
• Leader enters iteration h and	Every honest player enters iteration h	Every honest player sees some notarized	
proposes a new bloc b _h extending a notarized chain		block of height h .	
b ₁ b _{h-1} .	Either everyone sends " vote b _h ", or someone already entered iteration h+1 .	5	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time $t + 2\delta$.

time t	time t + ð	time <i>t + 2δ</i>	
Leader enters iteration h and proposes a new block b_h extending a notarized chain $b_1 \dots b_{h-1}$.	 Every honest player enters iteration <i>h</i> and sees the proposal. Either everyone sent "vote b_h", or 	sees some notarized block of height <i>h</i> .	
	someone already entered iteration h+ 1	1.	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time $t + 2\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time t - ð	time t tin	ne $t + \delta$ tin	ne t + 2ð
	•	•	time $t + 3\Delta - \delta$
	Leader enters iteration <i>h</i> and proposes a new block b _h extending a notarized chain	Every honest player enters iteration <i>h</i> and sees the proposal.	Every honest player sees some notarized block of height h .
	rliest any honest yer can enter	Either everyone sends " vote b _h ", or someone already	
· · · · · ·	ration h .	entered iteration h+1 .	

Subclaim 2: The dummy block of height *h* (denoted \bot_h) cannot be notarized in any honest view before time $t + 2\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time t - ð tin	me t tim	e <i>t + δ</i> 1	ime <i>t + 2δ</i>
ite pr b nc b Earlies	st any honest r can enter	 Every honest player enters iteration <i>h</i> and sees the proposal. Either everyone send "vote b_h", or someone already entered iteration h+1. 	time $t + 3\Delta - \delta$ Every honest player sees some notarized block of height h . Cannot be \perp_h Must be b_h

Thus, every honest player finalizes the leader's block proposal by time $t + 3\delta$.

Earliest any honest timer can fire. ($\Delta > \delta$)

time <i>t - </i>	time t t	time $t + \delta$	time <i>t + 2</i> ð	tim	e t + 3 ð
	•	•	time t +	· 3Δ - <i>δ</i>	•
	Leader enters iteration <i>h</i> and proposes a new block b _h extending a notarized chain	Every honest player enters iteration <i>h</i> and sees the proposal.	5	nest player e notarized eight h .	Every honest player sees 2n/3 finalize messages for <i>h</i> .
pla	rliest any honest yer can enter ration h .	Either everyone sen " vote b_h ", or someone already entered iteration h+ ?	"finalize <i>l</i>		

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t

Every honest player

has entered iteration **h**.

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t	time <i>t</i> + 3∆
Every honest player has entered iteration <i>h</i> .	Either every honest timer for iteration <i>h</i> has fired, or some honest process entered iteration <i>h</i> +1 already.
	If timer fires, multicast " vote ⊥_h" .

Liveness for faulty leaders

Claim: if the network is good (after GST), **any** iteration will conclude after $3\Delta + \delta$ time.

time t	time <i>t + 3∆</i>	time t + $3\Delta + \delta$
Every honest player has entered iteration <i>h</i> .	Either every hones timer for iteration has fired, or some honest process entered iteration <i>I</i> already.	h enters iteration h+1 .
	If timer fires, multi " vote ⊥_h" .	cast

Expected Liveness

Claim: Suppose that every honest player sees TX before iteration *h*. Suppose every honest player enters iteration **h** by time **t**. Then TX is in the output of every honest player by time $t + 3.5\delta + 1.5\Delta$, in expectation.

Proof: In expectation, it takes 3/2 iterations to get an iteration with an honest leader. Thus, in expectation the number of iterations with faulty leaders is 1/2. Thus, the waiting time is at most

 $\frac{1/2 \cdot (3\Delta + \delta) + 3\delta}{= 3.5\delta + 1.5\Delta}$

as desired.

In Conclusion

A new consensus protocol, called Simplex Consensus

- Partial synchrony, **f < n/3** byzantine faults
- In our eyes, easiest security proofs!
- Can get communication efficiency using "sortition" [Algorand]

Thm: Assuming a (Bare) PKI, CRH, there exists a partially synchronous consensus protocol in the "random-leader model" with:

- Proposal confirmation time of 3δ
- Optimistic block time of **2***ð*
- Expected pessimistic liveness of $3.5\delta + 1.5\Delta$
- Worst-case liveness of $4\delta + \omega(\log \lambda) \cdot (3\Delta + \delta)$

What Next?

Work on understandable, efficient permissioned consensus

• Simplex [CP23], Streamlet [CS20]

Work on formalizing execution environments of protocols in the presence of various adversaries:

- Universal Reductions [CFP22]
- Non-equivocation in Distributed Protocols [BCS22]

Next

- The permissionless setting, dynamic participation
- Decentralized exchanges

Earliest any honest timer can fire. ($\Delta > \delta$)

time <i>t - </i> ð	time t t	ime <i>t + δ</i>	time <i>t + 28</i>	tim	ne t + 3δ
	•	•	time t +	· 3Δ - δ	•
	Leader enters iteration <i>h</i> and proposes a new block b _h extending a notarized chain	Every honest player enters iteration h and sees the proposal.	J	nest player e notarized n of	Every honest player sees 2n/3 finalize messages for <i>h</i> .
pla	rliest any honest over can enter ration h .	Either everyone send " vote b_h ", or someone already entered iteration h+1	"finalize <i>I</i>		

time t	time <i>t + 3∆</i>	time <i>t + 3∆ + δ</i>
•	•	•
Every honest player has entered iteration <i>h</i> .	Either every hones timer for iteration h has fired, or some honest process entered iteration h already.	enters iteration h+1 .
	If timer fires, multic " vote ⊥ _h ".	ast